博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
如何使用Spark ALS实现协同过滤
阅读量:6575 次
发布时间:2019-06-24

本文共 15874 字,大约阅读时间需要 52 分钟。

本文主要记录最近一段时间学习和实现的一些总结,希望对大家熟悉Spark ALS算法有所帮助。

更新:

  1. 【2016.06.12】Spark1.4.0中MatrixFactorizationModel提供了recommendForAll方法实现离线批量推荐,见。

测试环境

为了测试简单,在本地以local方式运行Spark,你需要做的是下载编译好的压缩包解压即可,可以参考。

测试数据使用的,下载之后解压到data目录。数据的格式请参考README中的说明,需要注意的是ratings.dat中的数据被处理过,每个用户至少访问了20个商品

下面的代码均在spark-shell中运行,启动时候可以根据你的机器内存设置JVM参数,例如:

bin/spark-shell --executor-memory 3g --driver-memory 3g --driver-java-options '-Xms2g -Xmx2g -XX:+UseCompressedOops'

预测评分

这个例子主要演示如何训练数据、评分并计算根均方差。

准备工作

首先,启动spark-shell,然后引入mllib包,我们需要用到ALS算法类和Rating评分类:

import org.apache.spark.mllib.recommendation.{
ALS, Rating}

Spark的日志级别默认为INFO,你可以手动设置为WARN级别,同样先引入log4j依赖:

import org.apache.log4j.{
Logger,Level}

然后,运行下面代码:

Logger.getLogger("org.apache.spark").setLevel(Level.WARN)Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

加载数据

spark-shell启动成功之后,sc为内置变量,你可以通过它来加载测试数据:

val data = sc.textFile("data/ml-1m/ratings.dat")

接下来解析文件内容,获得用户对商品的评分记录:

val ratings = data.map(_.split("::") match {
case Array(user, item, rate, ts) => Rating(user.toInt, item.toInt, rate.toDouble)}).cache()

查看第一条记录:

scala> ratings.firstres81: org.apache.spark.mllib.recommendation.Rating = Rating(1,1193,5.0)

我们可以统计文件中用户和商品数量:

val users = ratings.map(_.user).distinct()val products = ratings.map(_.product).distinct()println("Got "+ratings.count()+" ratings from "+users.count+" users on "+products.count+" products.")

可以看到如下输出:

//Got 1000209 ratings from 6040 users on 3706 products.

你可以对评分数据生成训练集和测试集,例如:训练集和测试集比例为8比2:

val splits = ratings.randomSplit(Array(0.8, 0.2), seed = 111l)val training = splits(0).repartition(numPartitions)val test = splits(1).repartition(numPartitions)

这里,我们是将评分数据全部当做训练集,并且也为测试集。

训练模型

接下来调用ALS.train()方法,进行模型训练:

val rank = 12val lambda = 0.01val numIterations = 20val model = ALS.train(ratings, rank, numIterations, lambda)

训练完后,我们看看model中的用户和商品特征向量:

model.userFeatures//res82: org.apache.spark.rdd.RDD[(Int, Array[Double])] = users MapPartitionsRDD[400] at mapValues at ALS.scala:218model.userFeatures.count//res84: Long = 6040model.productFeatures//res85: org.apache.spark.rdd.RDD[(Int, Array[Double])] = products MapPartitionsRDD[401] at mapValues at ALS.scala:222model.productFeatures.count//res86: Long = 3706

评测

我们要对比一下预测的结果,注意:我们将训练集当作测试集来进行对比测试。从训练集中获取用户和商品的映射:

val usersProducts= ratings.map {
case Rating(user, product, rate) => (user, product)}

显然,测试集的记录数等于评分总记录数,验证一下:

usersProducts.count  //Long = 1000209

使用推荐模型对用户商品进行预测评分,得到预测评分的数据集:

var predictions = model.predict(usersProducts).map {
case Rating(user, product, rate) => ((user, product), rate)}

查看其记录数:

predictions.count //Long = 1000209

将真实评分数据集与预测评分数据集进行合并,这样得到用户对每一个商品的实际评分和预测评分:

val ratesAndPreds = ratings.map {
case Rating(user, product, rate) => ((user, product), rate)}.join(predictions)ratesAndPreds.count //Long = 1000209

然后计算根均方差:

val rmse= math.sqrt(ratesAndPreds.map {
case ((user, product), (r1, r2)) => val err = (r1 - r2) err * err}.mean())println(s"RMSE = $rmse")

上面这段代码其实就是对测试集进行评分预测并计算相似度,这段代码可以抽象为一个方法,如下:

/** Compute RMSE (Root Mean Squared Error). */def computeRmse(model: MatrixFactorizationModel, data: RDD[Rating]) = {
val usersProducts = data.map {
case Rating(user, product, rate) => (user, product) } val predictions = model.predict(usersProducts).map {
case Rating(user, product, rate) => ((user, product), rate) } val ratesAndPreds = data.map {
case Rating(user, product, rate) => ((user, product), rate) }.join(predictions) math.sqrt(ratesAndPreds.map {
case ((user, product), (r1, r2)) => val err = (r1 - r2) err * err }.mean())}

除了RMSE指标,我们还可以及时AUC以及Mean average precision at K (MAPK),关于AUC的计算方法,参考,关于MAPK的计算方法可以参考《》一书第四章节内容,或者你可以看本文后面内容。

保存真实评分和预测评分

我们还可以保存用户对商品的真实评分和预测评分记录到本地文件:

ratesAndPreds.sortByKey().repartition(1).sortBy(_._1).map({
case ((user, product), (rate, pred)) => (user + "," + product + "," + rate + "," + pred)}).saveAsTextFile("/tmp/result")

上面这段代码先按用户排序,然后重新分区确保目标目录中只生成一个文件。如果你重复运行这段代码,则需要先删除目标路径:

import scala.sys.process._"rm -r /tmp/result".!

我们还可以对预测的评分结果按用户进行分组并按评分倒排序:

predictions.map {
case ((user, product), rate) => (user, (product, rate))}.groupByKey(numPartitions).map{
case (user_id,list)=> (user_id,list.toList.sortBy {
case (goods_id,rate)=> - rate})}

给一个用户推荐商品

这个例子主要是记录如何给一个或大量用户进行推荐商品,例如,对用户编号为384的用户进行推荐,查出该用户在测试集中评分过的商品。

找出5个用户:

users.take(5) //Array[Int] = Array(384, 1084, 4904, 3702, 5618)

查看用户编号为384的用户的预测结果中预测评分排前10的商品:

val userId = users.take(1)(0) //384val K = 10val topKRecs = model.recommendProducts(userId, K)println(topKRecs.mkString("\n"))//    Rating(384,2545,8.354966018818265)//    Rating(384,129,8.113083736094676)//    Rating(384,184,8.038113395650853)//    Rating(384,811,7.983433591425284)//    Rating(384,1421,7.912044967873945)//    Rating(384,1313,7.719639594879865)//    Rating(384,2892,7.53667094600392)//    Rating(384,2483,7.295378004543803)//    Rating(384,397,7.141158013610967)//    Rating(384,97,7.071089782695754)

查看该用户的评分记录:

val goodsForUser=ratings.keyBy(_.user).lookup(384)// Seq[org.apache.spark.mllib.recommendation.Rating] = WrappedArray(Rating(384,2055,2.0), Rating(384,1197,4.0), Rating(384,593,5.0), Rating(384,599,3.0), Rating(384,673,2.0), Rating(384,3037,4.0), Rating(384,1381,2.0), Rating(384,1610,4.0), Rating(384,3074,4.0), Rating(384,204,4.0), Rating(384,3508,3.0), Rating(384,1007,3.0), Rating(384,260,4.0), Rating(384,3487,3.0), Rating(384,3494,3.0), Rating(384,1201,5.0), Rating(384,3671,5.0), Rating(384,1207,4.0), Rating(384,2947,4.0), Rating(384,2951,4.0), Rating(384,2896,2.0), Rating(384,1304,5.0))productsForUser.size //Int = 22productsForUser.sortBy(-_.rating).take(10).map(rating => (rating.product, rating.rating)).foreach(println)//    (593,5.0)//    (1201,5.0)//    (3671,5.0)//    (1304,5.0)//    (1197,4.0)//    (3037,4.0)//    (1610,4.0)//    (3074,4.0)//    (204,4.0)//    (260,4.0)

可以看到该用户对22个商品评过分以及浏览的商品是哪些。

我们可以该用户对某一个商品的实际评分和预测评分方差为多少:

val actualRating = productsForUser.take(1)(0)//actualRating: org.apache.spark.mllib.recommendation.Rating = Rating(384,2055,2.0)    val predictedRating = model.predict(789, actualRating.product)val predictedRating = model.predict(384, actualRating.product)//predictedRating: Double = 1.9426030777174637val squaredError = math.pow(predictedRating - actualRating.rating, 2.0)//squaredError: Double = 0.0032944066875075172

如何找出和一个已知商品最相似的商品呢?这里,我们可以使用余弦相似度来计算:

import org.jblas.DoubleMatrix/* Compute the cosine similarity between two vectors */def cosineSimilarity(vec1: DoubleMatrix, vec2: DoubleMatrix): Double = {
vec1.dot(vec2) / (vec1.norm2() * vec2.norm2())}

以2055商品为例,计算实际评分和预测评分相似度

val itemId = 2055val itemFactor = model.productFeatures.lookup(itemId).head//itemFactor: Array[Double] = Array(0.3660752773284912, 0.43573060631752014, -0.3421429991722107, 0.44382765889167786, -1.4875195026397705, 0.6274569630622864, -0.3264533579349518, -0.9939845204353333, -0.8710321187973022, -0.7578890323638916, -0.14621856808662415, -0.7254264950752258)val itemVector = new DoubleMatrix(itemFactor)//itemVector: org.jblas.DoubleMatrix = [0.366075; 0.435731; -0.342143; 0.443828; -1.487520; 0.627457; -0.326453; -0.993985; -0.871032; -0.757889; -0.146219; -0.725426]cosineSimilarity(itemVector, itemVector)// res99: Double = 0.9999999999999999

找到和该商品最相似的10个商品:

val sims = model.productFeatures.map{
case (id, factor) => val factorVector = new DoubleMatrix(factor) val sim = cosineSimilarity(factorVector, itemVector) (id, sim)}val sortedSims = sims.top(K)(Ordering.by[(Int, Double), Double] {
case (id, similarity) => similarity })//sortedSims: Array[(Int, Double)] = Array((2055,0.9999999999999999), (2051,0.9138311231145874), (3520,0.8739823400539756), (2190,0.8718466671129721), (2050,0.8612639515847019), (1011,0.8466911667526461), (2903,0.8455764332511272), (3121,0.8227325520485377), (3674,0.8075743004357392), (2016,0.8063817280259447))println(sortedSims.mkString("\n"))// (2055,0.9999999999999999)// (2051,0.9138311231145874)// (3520,0.8739823400539756)// (2190,0.8718466671129721)// (2050,0.8612639515847019)// (1011,0.8466911667526461)// (2903,0.8455764332511272)// (3121,0.8227325520485377)// (3674,0.8075743004357392)// (2016,0.8063817280259447)

显然第一个最相似的商品即为该商品本身,即2055,我们可以修改下代码,取前k+1个商品,然后排除第一个:

val sortedSims2 = sims.top(K + 1)(Ordering.by[(Int, Double), Double] {
case (id, similarity) => similarity })//sortedSims2: Array[(Int, Double)] = Array((2055,0.9999999999999999), (2051,0.9138311231145874), (3520,0.8739823400539756), (2190,0.8718466671129721), (2050,0.8612639515847019), (1011,0.8466911667526461), (2903,0.8455764332511272), (3121,0.8227325520485377), (3674,0.8075743004357392), (2016,0.8063817280259447), (3672,0.8016276723120674))sortedSims2.slice(1, 11).map{
case (id, sim) => (id, sim) }.mkString("\n")// (2051,0.9138311231145874)// (3520,0.8739823400539756)// (2190,0.8718466671129721)// (2050,0.8612639515847019)// (1011,0.8466911667526461)// (2903,0.8455764332511272)// (3121,0.8227325520485377)// (3674,0.8075743004357392)// (2016,0.8063817280259447)// (3672,0.8016276723120674)

接下来,我们可以计算给该用户推荐的前K个商品的平均准确度MAPK,该算法定义如下(该算法是否正确还有待考证):

/* Function to compute average precision given a set of actual and predicted ratings */// Code for this function is based on: https://github.com/benhamner/Metricsdef avgPrecisionK(actual: Seq[Int], predicted: Seq[Int], k: Int): Double = {
val predK = predicted.take(k) var score = 0.0 var numHits = 0.0 for ((p, i) <- predK.zipWithIndex) {
if (actual.contains(p)) {
numHits += 1.0 score += numHits / (i.toDouble + 1.0) } } if (actual.isEmpty) {
1.0 } else {
score / scala.math.min(actual.size, k).toDouble }}

给该用户推荐的商品为:

val actualProducts = productsForUser.map(_.product)//actualProducts: Seq[Int] = ArrayBuffer(2055, 1197, 593, 599, 673, 3037, 1381, 1610, 3074, 204, 3508, 1007, 260, 3487, 3494, 1201, 3671, 1207, 2947, 2951, 2896, 1304)

给该用户预测的商品为:

val predictedProducts = topKRecs.map(_.product)//predictedProducts: Array[Int] = Array(2545, 129, 184, 811, 1421, 1313, 2892, 2483, 397, 97)

最后的准确度为:

val apk10 = avgPrecisionK(actualProducts, predictedProducts, 10)// apk10: Double = 0.0

批量推荐

你可以评分记录中获得所有用户然后依次给每个用户推荐:

val users = ratings.map(_.user).distinct()users.collect.flatMap {
user => model.recommendProducts(user, 10)}

这种方式是遍历内存中的一个集合然后循环调用RDD的操作,运行会比较慢,另外一种方式是直接操作model中的userFeatures和productFeatures,代码如下:

val itemFactors = model.productFeatures.map {
case (id, factor) => factor }.collect()val itemMatrix = new DoubleMatrix(itemFactors)println(itemMatrix.rows, itemMatrix.columns)//(3706,12)// broadcast the item factor matrixval imBroadcast = sc.broadcast(itemMatrix)//获取商品和索引的映射var idxProducts=model.productFeatures.map {
case (prodcut, factor) => prodcut }.zipWithIndex().map{
case (prodcut, idx) => (idx,prodcut)}.collectAsMap()val idxProductsBroadcast = sc.broadcast(idxProducts)val allRecs = model.userFeatures.map{
case (user, array) => val userVector = new DoubleMatrix(array) val scores = imBroadcast.value.mmul(userVector) val sortedWithId = scores.data.zipWithIndex.sortBy(-_._1) //根据索引取对应的商品id val recommendedProducts = sortedWithId.map(_._2).map{
idx=>idxProductsBroadcast.value.get(idx).get} (user, recommendedProducts) }

这种方式其实还不是最优方法,更好的方法可以参考,当然这篇文章中的代码还可以继续优化一下。我修改后的代码如下,供大家参考:

val productFeatures = model.productFeatures.collect()var productArray = ArrayBuffer[Int]()var productFeaturesArray = ArrayBuffer[Array[Double]]()for ((product, features) <- productFeatures) {
productArray += product productFeaturesArray += features}val productArrayBroadcast = sc.broadcast(productArray)val productFeatureMatrixBroadcast = sc.broadcast(new DoubleMatrix(productFeaturesArray.toArray).transpose())start = System.currentTimeMillis()val allRecs = model.userFeatures.mapPartitions {
iter => // Build user feature matrix for jblas var userFeaturesArray = ArrayBuffer[Array[Double]]() var userArray = new ArrayBuffer[Int]() while (iter.hasNext) {
val (user, features) = iter.next() userArray += user userFeaturesArray += features } var userFeatureMatrix = new DoubleMatrix(userFeaturesArray.toArray) var userRecommendationMatrix = userFeatureMatrix.mmul(productFeatureMatrixBroadcast.value) var productArray=productArrayBroadcast.value var mappedUserRecommendationArray = new ArrayBuffer[String](params.topk) // Extract ratings from the matrix for (i <- 0 until userArray.length) {
var ratingSet = mutable.TreeSet.empty(Ordering.fromLessThan[(Int,Double)](_._2 > _._2)) for (j <- 0 until productArray.length) {
var rating = (productArray(j), userRecommendationMatrix.get(i,j)) ratingSet += rating } mappedUserRecommendationArray += userArray(i)+","+ratingSet.take(params.topk).mkString(",") } mappedUserRecommendationArray.iterator}

2015.06.12 更新:

悲哀的是,上面的方法还是不能解决问题,因为矩阵相乘会撑爆集群内存;可喜的是,如果你关注Spark最新动态,你会发现Spark1.4.0中MatrixFactorizationModel提供了recommendForAll方法实现离线批量推荐,详细说明见。因为,我使用的Hadoop版本是CDH-5.4.0,其中Spark版本还是1.3.0,所以暂且不能在集群上测试Spark1.4.0中添加的新方法。

如果上面结果跑出来了,就可以验证推荐结果是否正确。还是以384用户为例:

allRecs.lookup(384).head.take(10)//res50: Array[Int] = Array(1539, 219, 1520, 775, 3161, 2711, 2503, 771, 853, 759)topKRecs.map(_.product)//res49: Array[Int] = Array(1539, 219, 1520, 775, 3161, 2711, 2503, 771, 853, 759)

接下来,我们可以计算所有推荐结果的准确度了,首先,得到每个用户评分过的所有商品:

val userProducts = ratings.map{
case Rating(user, product, rating) => (user, product) }.groupBy(_._1)

然后,预测的商品和实际商品关联求准确度:

// finally, compute the APK for each user, and average them to find MAPKval MAPK = allRecs.join(userProducts).map{
case (userId, (predicted, actualWithIds)) => val actual = actualWithIds.map(_._2).toSeq avgPrecisionK(actual, predicted, K)}.reduce(_ + _) / allRecs.countprintln("Mean Average Precision at K = " + MAPK)//Mean Average Precision at K = 0.018827551771260383

其实,我们也可以使用Spark内置的算法计算RMSE和MAE:

// MSE, RMSE and MAEimport org.apache.spark.mllib.evaluation.RegressionMetricsval predictedAndTrue = ratesAndPreds.map {
case ((user, product), (actual, predicted)) => (actual, predicted) }val regressionMetrics = new RegressionMetrics(predictedAndTrue)println("Mean Squared Error = " + regressionMetrics.meanSquaredError)println("Root Mean Squared Error = " + regressionMetrics.rootMeanSquaredError)// Mean Squared Error = 0.5490153087908566// Root Mean Squared Error = 0.7409556726220918// MAPKimport org.apache.spark.mllib.evaluation.RankingMetricsval predictedAndTrueForRanking = allRecs.join(userProducts).map{
case (userId, (predicted, actualWithIds)) => val actual = actualWithIds.map(_._2) (predicted.toArray, actual.toArray)}val rankingMetrics = new RankingMetrics(predictedAndTrueForRanking)println("Mean Average Precision = " + rankingMetrics.meanAveragePrecision)// Mean Average Precision = 0.04417535679520426

计算推荐2000个商品时的准确度为:

val MAPK2000 = allRecs.join(userProducts).map{
case (userId, (predicted, actualWithIds)) => val actual = actualWithIds.map(_._2).toSeq avgPrecisionK(actual, predicted, 2000)}.reduce(_ + _) / allRecs.countprintln("Mean Average Precision = " + MAPK2000)//Mean Average Precision = 0.025228311843069083

保存和加载推荐模型

对与实时推荐,我们需要启动一个web server,在启动的时候生成或加载训练模型,然后提供API接口返回推荐接口,需要调用的相关方法为:

save(model: MatrixFactorizationModel, path: String)load(sc: SparkContext, path: String)

model中的userFeatures和productFeatures也可以保存起来:

val outputDir="/tmp"model.userFeatures.map{
case (id, vec) => id + "\t" + vec.mkString(",") }.saveAsTextFile(outputDir + "/userFeatures")model.productFeatures.map{
case (id, vec) => id + "\t" + vec.mkString(",") }.saveAsTextFile(outputDir + "/productFeatures")

总结

本文主要记录如何使用ALS算法实现协同过滤并给用户推荐商品,以上代码在仓库中的ScalaLocalALS.scala文件。

如果你想更加深入了解Spark MLlib算法的使用,可以看看这本电子书并下载书中的源码,本文大部分代码参考自该电子书。

转载地址:http://memjo.baihongyu.com/

你可能感兴趣的文章
u3d移动游戏优化规范
查看>>
POJ1703 Find them, Catch them
查看>>
Eclipse Java注释模板设置
查看>>
基于gmap.net制作离线地图下载器
查看>>
Docker网络的基本功能操作示例
查看>>
淘宝静态页面
查看>>
Dockerfile Tomcat镜像制作
查看>>
自适应备忘录 demo
查看>>
Sharepoint 2010弹出对话框
查看>>
静态类(C#)
查看>>
linux vi
查看>>
K:栈和队列的比较
查看>>
PHP中获取当前页面的完整URL
查看>>
【模板】左偏树(可并堆)
查看>>
Django框架之路由层、视图层
查看>>
深入分析escape()、encodeURI()、encodeURIComponent()的区别及示例
查看>>
正则查找文章内容关键字
查看>>
JS绘制拓扑图示例 (JTopo)
查看>>
世界最大电子展明年将移植到深圳
查看>>
iOS图片浏览器 - XLPhotoBrowser(类似微信多图片浏览效果)
查看>>